Error Handling
Error Flow
flowchart TD
A[Client Request] --> B{Try Request}
B -->|Success| C[Return Response]
B -->|Error| D{Error Type}
D -->|API Error| E[APIError]
D -->|Rate Limit| F[RateLimitError]
D -->|Budget| G[BudgetExceededError]
D -->|Validation| H[ValidationError]
D -->|Other| I[BaseError]
E & F & G & H & I --> J[Error Handler]
J -->|Retry Policy| K{Can Retry?}
K -->|Yes| B
K -->|No| L[Raise Error]
style B fill:#f96
style D fill:#f96
style K fill:#f96
Overview
Pydantic2 provides a comprehensive error handling system to manage various failure scenarios.
Exception Hierarchy
All exceptions inherit from the base PydanticAIError
:
from pydantic2.client.exceptions import (
PydanticAIError, # Base exception
BudgetExceeded, # Budget limit exceeded
ErrorGeneratingResponse, # Generation error
ModelNotFound, # Model not available
InvalidConfiguration, # Invalid client config
ValidationError, # Response validation failed
NetworkError # Network/HTTP error
)
Basic Error Handling
from pydantic2 import PydanticAIClient
from pydantic2.client.exceptions import PydanticAIError
client = PydanticAIClient()
try:
response = client.generate(
result_type=MyResponseModel
)
except PydanticAIError as e:
print(f"Error: {str(e)}")
Specific Exceptions
BudgetExceeded
Raised when request cost would exceed the budget limit:
try:
response = client.generate(...)
except BudgetExceeded as e:
print(f"Budget limit: ${e.budget_limit:.4f}")
print(f"Current cost: ${e.current_cost:.4f}")
# Request additional budget or handle gracefully
ValidationError
Raised when model response doesn't match the Pydantic model:
try:
response = client.generate(...)
except ValidationError as e:
print(f"Validation failed: {e.message}")
if e.model:
print(f"Model: {e.model.__class__.__name__}")
if e.errors:
print("Errors:")
for error in e.errors:
print(f"- {error}")
NetworkError
Raised for HTTP/network-related failures:
try:
response = client.generate(...)
except NetworkError as e:
print(f"Network error: {e.message}")
if e.status_code:
print(f"Status code: {e.status_code}")
if e.response:
print(f"Response: {e.response}")
ErrorGeneratingResponse
Raised when the model fails to generate a response:
try:
response = client.generate(...)
except ErrorGeneratingResponse as e:
print(f"Generation failed: {e.message}")
print(f"Error: {e.error}")
if e.details:
print(f"Details: {e.details}")
ModelNotFound
Raised when the requested model is not available:
try:
response = client.generate(...)
except ModelNotFound as e:
print(f"Model '{e.model_name}' not found")
# Switch to alternative model
InvalidConfiguration
Raised for invalid client configuration:
try:
client = PydanticAIClient(...)
except InvalidConfiguration as e:
print(f"Invalid config: {e.message}")
# Fix configuration and retry
Error Recovery Strategies
Automatic Retries
The client automatically retries on certain errors:
Budget Management
Handle budget limits gracefully:
try:
response = client.generate(...)
except BudgetExceeded as e:
remaining = e.budget_limit - e.current_cost
if remaining < 0:
print(f"Over budget by ${abs(remaining):.4f}")
# Request budget increase or pause operations
Validation Recovery
Handle validation errors with fallback logic:
try:
response = client.generate(...)
except ValidationError as e:
# Log the error
print(f"Validation failed: {e.message}")
# Try to fix the data
if e.received_data:
try:
# Attempt to clean/fix the data
fixed_data = clean_response_data(e.received_data)
# Create model instance manually
response = MyResponseModel(**fixed_data)
except Exception as fix_error:
print(f"Could not fix data: {fix_error}")
Best Practices
- Always catch specific exceptions before general ones
- Log errors with sufficient context
- Implement appropriate retry logic
- Have fallback strategies for critical operations
- Monitor error patterns
- Set appropriate budgets
- Validate responses carefully
Next Steps
- Learn about Budget Management in Budget Management
- Explore Type-Safe Responses in Type-Safe Responses
- Check out the CLI Tools in CLI Tools