Message Handling
Message Flow
sequenceDiagram
participant C as Client
participant MH as MessageHandler
participant AI as AI Model
participant R as Response
C->>MH: Add System Message
C->>MH: Add User Message
C->>MH: Add Data Block
MH->>MH: Format Messages
MH->>AI: Send Formatted Prompt
AI->>R: Generate Response
R->>C: Return Result
Note over MH: Manages message history<br/>and formatting
Overview
The message_handler
is the core component for building conversations with AI models in Pydantic2. It manages different types of messages and formats them appropriately.
Message Types
1. System Messages
Set behavior and context for the AI:
client.message_handler.add_message_system(
"You are a helpful AI assistant specializing in Python programming."
)
2. User Messages
Add user inputs to the conversation:
3. Assistant Messages
Add AI responses for multi-turn conversations:
client.message_handler.add_message_assistant(
"Exceptions in Python are handled using try-except blocks..."
)
4. Structured Data Blocks
Add any data that can be formatted as YAML. The message handler automatically converts and formats the data:
# Dictionary example
client.message_handler.add_message_block(
"PARAMETERS",
{
"temperature": 0.7,
"max_tokens": 100,
"nested": {
"key": "value",
"list": [1, 2, 3]
}
}
)
# List example
client.message_handler.add_message_block(
"AVAILABLE_MODELS",
["gpt-4", "claude-2", "llama-2"]
)
# Mixed data types
client.message_handler.add_message_block(
"CONTEXT",
{
"numbers": [1, 2, 3],
"text": "Sample text",
"boolean": True,
"float": 3.14,
"nested_list": [
{"name": "item1", "value": 100},
{"name": "item2", "value": 200}
]
}
)
# Complex structures
client.message_handler.add_message_block(
"DATABASE_SCHEMA",
{
"tables": {
"users": {
"columns": ["id", "name", "email"],
"primary_key": "id",
"indexes": ["email"],
"relationships": [
{"table": "orders", "type": "one-to-many"}
]
}
}
}
)
All data is automatically formatted into clean, readable YAML:
PARAMETERS:
temperature: 0.7
max_tokens: 100
nested:
key: value
list:
- 1
- 2
- 3
AVAILABLE_MODELS:
- gpt-4
- claude-2
- llama-2
CONTEXT:
numbers:
- 1
- 2
- 3
text: Sample text
boolean: true
float: 3.14
nested_list:
- name: item1
value: 100
- name: item2
value: 200
Supported Data Types
The message handler supports any combination of these types: - Strings: Any text content - Numbers: Integers and floats - Booleans: True/False values - Lists: Arrays of any supported type - Dictionaries: Nested structures - None/null: Represented as null
in YAML - Mixed Types: Any combination of the above
All data is automatically: - Properly indented - Type-preserved - Unicode-safe - Formatted for readability
Message Management
Available Methods
# Clear all messages
client.message_handler.clear()
# Get all messages in raw format
messages = client.message_handler.get_messages()
# Get combined system messages
system_prompt = client.message_handler.get_system_prompt()
# Get combined user and assistant messages
conversation = client.message_handler.get_user_prompt()
# Get formatted request for logging
raw_request = client.message_handler.format_raw_request()
# Get human-readable format of all messages
formatted = client.message_handler.get_formatted_prompt()
Internal Message Structure
Messages are stored as dictionaries with role and content:
Data Formatting
The message handler supports and automatically formats: - Basic types: str, int, float, bool - Complex types: dict, list - YAML formatting for structured data - Unicode characters - Proper indentation for nested structures
Best Practices
-
Start with System Message
-
Build Conversations Properly
# Add user question client.message_handler.add_message_user("What is a decorator?") # Get and store response response: Answer = client.generate(result_type=Answer) client.message_handler.add_message_assistant(response.content) # Follow-up question client.message_handler.add_message_user("Can you show an example?")
-
Use Structured Data When Relevant
-
Clear History When Starting New Topics
-
Maintain Conversation Context
Complete Example
from pydantic2 import PydanticAIClient
from pydantic import BaseModel, Field
class CodeExplanation(BaseModel):
explanation: str = Field(description="Detailed explanation")
example: str = Field(description="Code example")
notes: list[str] = Field(description="Additional notes")
client = PydanticAIClient(
model_name="openai/gpt-4o-mini",
client_id="my_app",
user_id="user123"
)
# Set context
client.message_handler.add_message_system(
"You are a Python expert. Provide clear explanations with examples."
)
# Add user question
client.message_handler.add_message_user(
"Explain Python decorators"
)
# Add context
client.message_handler.add_message_block(
"PREFERENCES",
{
"skill_level": "intermediate",
"focus": "practical_usage",
"include_examples": True
}
)
# Generate response
response: CodeExplanation = client.generate(result_type=CodeExplanation)
# Add response to conversation history
client.message_handler.add_message_assistant(response.explanation)
Next Steps
- Learn about Type-Safe Responses
- Explore Online Search
- Check out Error Handling