Skip to content

Type-Safe Responses

One of the core features of Pydantic2 is the ability to define structured, type-safe responses from language models.

The Problem with Unstructured Text

Traditional language model APIs return unstructured text, which requires parsing and validation to be useful in applications. This leads to several issues:

  • Unpredictable response formats
  • Error-prone manual parsing
  • Difficult integration with typed systems
  • Inconsistent output structure

How Pydantic2 Solves This

Pydantic2 uses Pydantic models to define the structure and validation rules for LLM responses. The framework:

  1. Prompts the model with your schema requirements
  2. Processes the raw LLM output
  3. Validates it against your Pydantic model
  4. Returns a properly typed Python object

Defining Response Models

Create a Pydantic model to define your expected output structure:

from pydantic import BaseModel, Field
from typing import List

class MovieReview(BaseModel):
    title: str = Field(description="The title of the movie")
    rating: float = Field(ge=0, le=10, description="Rating from 0-10")
    pros: List[str] = Field(description="Positive aspects of the movie")
    cons: List[str] = Field(description="Negative aspects of the movie")
    summary: str = Field(description="Brief review summary")

Key benefits:

  • Self-documenting: Field descriptions explain what each field is for
  • Validated: Ensure values meet your requirements (e.g., rating is between 0-10)
  • Type safe: IDE autocompletion and type checking
  • Default values: Handle missing data gracefully

Generating Structured Responses

Use your model with the message handler:

from pydantic2 import PydanticAIClient

client = PydanticAIClient()

# Add system context
client.message_handler.add_message_system(
    "You are a movie critic. Provide detailed, balanced reviews."
)

# Add user request
client.message_handler.add_message_user(
    "Review the movie 'The Matrix'"
)

# Generate a structured movie review
review = client.generate(result_type=MovieReview)

# Access fields as attributes
print(f"Movie: {review.title}")
print(f"Rating: {review.rating}/10")
print(f"Summary: {review.summary}")

print("Pros:")
for pro in review.pros:
    print(f"- {pro}")

print("Cons:")
for con in review.cons:
    print(f"- {con}")

Complex Nested Models

You can create complex nested models for more sophisticated responses:

from pydantic import BaseModel, Field
from typing import List, Dict, Optional
from datetime import datetime

class Author(BaseModel):
    name: str = Field(description="Author's full name")
    expertise: List[str] = Field(description="Areas of expertise")

class Reference(BaseModel):
    title: str = Field(description="Title of the reference")
    url: str = Field(description="URL of the reference")
    access_date: datetime = Field(description="When the reference was accessed")

class ResearchReport(BaseModel):
    title: str = Field(description="Report title")
    authors: List[Author] = Field(description="List of authors")
    summary: str = Field(description="Executive summary")
    findings: List[str] = Field(description="Key findings")
    methodology: str = Field(description="Research methodology")
    references: List[Reference] = Field(description="Sources referenced")
    limitations: Optional[List[str]] = Field(
        default=None,
        description="Limitations of the research"
    )

Handling Validation Errors

When the LLM response doesn't match your model, Pydantic2 raises a ValidationError:

from pydantic2 import PydanticAIClient
from pydantic2.client.exceptions import ValidationError

client = PydanticAIClient()

try:
    client.message_handler.add_message_user(
        "Review the movie 'The Matrix'"
    )
    review = client.generate(result_type=MovieReview)
except ValidationError as e:
    print("Response didn't match the expected format:")
    print(e.errors)  # List of validation errors
    print(e.received_data)  # The raw data received

Best Practices

  1. Be specific with field descriptions: Clear descriptions help the model generate appropriate values
  2. Use validation constraints: Add constraints like ge, le, min_length, etc.
  3. Start simple: Begin with simpler models and add complexity gradually
  4. Include examples: If responses are inconsistent, provide examples in your prompts
  5. Use optional fields: Mark fields as Optional if they're not always required
  6. Provide default values: Use default or default_factory for fields that might be missing

Advanced Type Hints

Pydantic2 supports all of Pydantic's type hints:

from pydantic import BaseModel, Field, HttpUrl, EmailStr
from typing import List, Dict, Optional, Union, Literal
from datetime import datetime
from enum import Enum

class Category(str, Enum):
    TECH = "technology"
    SCIENCE = "science"
    HEALTH = "health"

class ArticleSummary(BaseModel):
    title: str = Field(description="Article title")
    url: HttpUrl = Field(description="Article URL")
    publish_date: datetime = Field(description="Publication date")
    category: Category = Field(description="Article category")
    sentiment: Literal["positive", "neutral", "negative"] = Field(
        description="Overall sentiment"
    )
    word_count: int = Field(ge=0, description="Number of words")
    contact: Optional[EmailStr] = Field(default=None, description="Contact email")
    tags: List[str] = Field(default_factory=list, description="Article tags")
    metadata: Dict[str, Union[str, int, bool]] = Field(
        default_factory=dict,
        description="Additional metadata"
    )

Next Steps