Model Pricing and Cost Management
Pydantic2 provides comprehensive model pricing and cost management through the ModelPriceManager
class.
Cost Management Architecture
graph TD
subgraph Price Management
A[Model Request] --> B[ModelPriceManager]
B --> C[Get Model Price]
B --> D[Check Budget]
end
subgraph Cost Calculation
C --> E[Input Cost]
C --> F[Output Cost]
E --> G[Total Cost]
F --> G
end
subgraph Budget Control
G --> H{Check Limits}
H -->|Within Budget| I[Allow Request]
H -->|Exceeded| J[Block Request]
end
style B fill:#f96
style C fill:#9cf
style D fill:#f96
style H fill:#f96
Price Updates Flow
sequenceDiagram
participant Manager as PriceManager #f96
participant Cache as PriceCache #9cf
participant DB as ModelsDB #bbf
participant API as OpenRouter #ddd
Note over Manager,API: Daily Price Update
Manager->>API: Fetch Latest Prices
API-->>Manager: Price List
Manager->>DB: Store Prices
Manager->>Cache: Update Cache
Note over Manager,API: Request Processing
Manager->>Cache: Check Price
alt Cache Hit
Cache-->>Manager: Return Price
else Cache Miss
Manager->>DB: Fetch Price
DB-->>Manager: Price Info
Manager->>Cache: Update Cache
end
Quick Start
from pydantic2.client.usage.model_prices import ModelPriceManager
# Initialize price manager
price_manager = ModelPriceManager()
# Get model price
model_price = price_manager.get_model_price("openai/gpt-4")
print(f"Input cost per token: ${model_price.get_input_cost()}")
print(f"Output cost per token: ${model_price.get_output_cost()}")
# Check budget
budget_ok = price_manager.check_budget(
model_name="openai/gpt-4",
input_tokens=100,
output_tokens=50,
budget_limit=0.1
)
Model Price Configuration
from pydantic2.client.usage.model_prices import ModelPrice
# Define custom model price
custom_price = ModelPrice(
model_id="custom/model",
input_cost_per_token=0.0001,
output_cost_per_token=0.0002,
context_length=4096,
max_output_tokens=1000
)
# Register custom model
price_manager.register_model(custom_price)
Best Practices
- Regular Updates: Keep model prices up to date
- Budget Limits: Set appropriate budget limits per client
- Custom Models: Register custom models with accurate pricing
- Cache Management: Monitor and clear price cache when needed
- Cost Monitoring: Track costs across different models