Skip to content

Progress Form Example

Example of using Progress Form to create a smart startup registration form with automatic analysis and testing.

Complete Code Example

from typing import List, Optional
from pydantic import BaseModel, Field
from pydantic2.agents.progress_form import BaseProgressForm


class StartupForm(BaseModel):
    """Structure for storing startup form data"""
    idea_desc: str = Field(default="", description="Description of startup idea")
    target_mkt: str = Field(default="", description="Target market info")
    biz_model: str = Field(default="", description="Business model info")
    team_info: str = Field(default="", description="Team background")


class StartupFormResponse(BaseModel):
    """Response format for startup form analysis"""
    feedback: str = Field(description="Detailed feedback on the startup idea")
    score: float = Field(ge=0, le=10, description="Overall score of the startup idea")
    strengths: List[str] = Field(description="Key strengths of the startup idea")
    weaknesses: List[str] = Field(description="Areas for improvement")
    next_steps: List[str] = Field(description="Recommended next steps")
    market_potential: Optional[float] = Field(
        ge=0, le=10,
        description="Market potential score"
    )


class StartupFormProcessor(BaseProgressForm):
    """Processor for startup form data"""

    def __init__(self, user_id: str):
        super().__init__(
            user_id=user_id,
            client_id="startup_form",
            form_class=StartupForm,
            verbose=False,
            verbose_clients=False,
            form_prompt="""
                Ask in Russian.
            """,
        )

        # Register tools
        self.tools = [self.analyze_startup]

        # Configure test agent
        self.configure_test_agent(
            prompt="""
            You are a naive startup founder who is asking for help to make a startup.
            Talk like a stupid.
            """,
            client=self._get_test_agent_client(temperature=0.7)
        )

    def analyze_startup(
        self,
        message: str,
    ) -> StartupFormResponse:
        """Analyze complete startup info when form is complete"""
        client = self._get_tool_client(temperature=0.7)

        client.message_handler.add_message_system(
            """
            You are a startup analyst. Generate a comprehensive analysis:
            1. Evaluate overall viability (0-10)
            2. List 3-5 key strengths
            3. List 2-3 areas for improvement
            4. Suggest 2-3 specific next steps
            5. Score market potential (0-10)
            """
        )

        client.message_handler.add_message_block(
            "STARTUP_INFO",
            self.current_state.form.model_dump()
        )

        try:
            result: StartupFormResponse = client.generate(
                result_type=StartupFormResponse
            )

            print("\n")
            print("="*50)
            print("🎉 STARTUP ANALYSIS SUCCESS 🎉")
            print("="*50)
            print(result.model_dump_json(indent=2))
            print("="*50)

            return result
        except Exception as e:
            raise Exception(f"Error analyzing startup: {str(e)}")


def main():
    """Example usage of StartupFormProcessor"""
    processor = StartupFormProcessor(user_id="test_user")
    processor.run_test_dialog()


if __name__ == "__main__":
    main()

How It Works

1. Form Structure

  • Define fields for data collection
  • Add descriptions for each field
  • Set default values

2. Form Processor

  • Initialize with required settings
  • Register analysis tool
  • Configure test agent

3. Test Agent

  • Simulates real user
  • Has defined "personality"
  • Makes realistic mistakes

4. Data Analysis

  • Triggers at 100% completion
  • Generates structured report
  • Suggests concrete actions

Running the Example

# Run the example
python startup_form.py

You'll see: 1. Dialog with test agent 2. Form completion process 3. Progress tracking 4. Final analysis

Example Output

{
  "feedback": "Strong technical team with proven experience...",
  "score": 8.5,
  "strengths": [
    "Experienced technical co-founders",
    "Clear market understanding",
    "Validated customer interest"
  ],
  "weaknesses": [
    "Early stage revenue",
    "Competitive market"
  ],
  "next_steps": [
    "Expand pilot program",
    "Secure seed funding",
    "Build sales team"
  ],
  "market_potential": 9.0
}

Key Features

1. Form Structure

  • Clear field definitions
  • Descriptive labels
  • Default values

2. Analysis

  • Structured output
  • Score ranges
  • Optional fields

3. Agent Configuration

  • Personality customization
  • Temperature settings
  • System prompts

4. Error Handling

  • Try/catch blocks
  • Informative messages
  • State preservation

Advanced Configuration

Custom Client Configuration

While Progress Form provides convenient methods like _get_test_agent_client and _get_tool_client, you can also configure your own custom client for more control:

from pydantic2 import PydanticAIClient, ModelSettings

# Create custom client
custom_client = PydanticAIClient(
    model_name="openai/gpt-4o-mini-2024-07-18",
    client_id="custom_startup_analyzer",
    user_id="test_user",
    verbose=False,
    retries=3,
    online=True,
    max_budget=1,
    model_settings=ModelSettings(
        max_tokens=1000,
        temperature=0.7,
        top_p=1,
        frequency_penalty=0,
    )
)

# Use custom client in your processor
class CustomStartupFormProcessor(BaseProgressForm):
    def __init__(self, user_id: str):
        super().__init__(
            user_id=user_id,
            client_id="startup_form",
            form_class=StartupForm,
            verbose=True,
            client_agent=custom_client  # Pass custom client
        )

        # Configure test agent with custom client
        self.configure_test_agent(
            prompt="Your prompt here...",
            client=custom_client
        )

    def analyze_startup(self, message: str) -> StartupFormResponse:
        # Use custom client for analysis
        result = custom_client.generate(
            result_type=StartupFormResponse,
            messages=[
                {
                    "role": "system",
                    "content": "You are a startup analyst..."
                },
                {
                    "role": "user",
                    "content": "Analyze this startup data..."
                }
            ]
        )
        return result

Benefits of custom client:

  • Fine-tune model parameters
  • Control API settings
  • Custom retry logic
  • Detailed monitoring
  • Different models for different tasks

Client Configuration Options

You can customize various aspects of the client:

  1. Model Selection
client = PydanticAIClient(
    model_name="openai/gpt-4o-mini-2024-07-18",  # Choose model
    model_settings=ModelSettings(
        max_tokens=2000,  # Longer responses
        temperature=0.9,  # More creative
    )
)
  1. Performance Settings

    client = PydanticAIClient(
        retries=5,  # More retries
        online=True,  # Use online mode
        max_budget=5,  # Higher budget
    )
    

  2. Different Clients for Different Tasks

    class MultiClientProcessor(BaseProgressForm):
        def __init__(self, user_id: str):
            # High temperature for creative tasks
            self.creative_client = PydanticAIClient(
                model_name="openai/gpt-4o-mini-2024-07-18",
                model_settings=ModelSettings(temperature=0.9)
            )
    
            # Low temperature for analytical tasks
            self.analytical_client = PydanticAIClient(
                model_name="openai/gpt-4o-mini-2024-07-18",
                model_settings=ModelSettings(temperature=0.1)
            )
    
            super().__init__(
                user_id=user_id,
                client_id="multi_client_form",
                form_class=StartupForm,
                client_agent=self.analytical_client
            )
    
        def analyze_creative(self, message: str):
            return self.creative_client.generate(...)
    
        def analyze_metrics(self, message: str):
            return self.analytical_client.generate(...)