Skip to content

Basic Usage Examples

This page provides simple examples to help you get started with Pydantic2.

Simple Text Generation

from pydantic import BaseModel, Field
from pydantic2 import PydanticAIClient

class Summary(BaseModel):
    content: str = Field(description="Summarized content")

client = PydanticAIClient(
    model_name="openai/gpt-4o-mini",
    client_id="my_app",      # Required for tracking
    user_id="user123"       # Required for tracking
)

# Add message
client.message_handler.add_message_user(
    "Summarize the benefits of exercise."
)

response: Summary = client.generate(result_type=Summary)
print(response.content)

Structured Output

from typing import List
from pydantic import BaseModel, Field
from pydantic2 import PydanticAIClient

class MovieRecommendation(BaseModel):
    title: str = Field(description="Movie title")
    year: int = Field(description="Year of release")
    genre: List[str] = Field(description="Movie genres")
    summary: str = Field(description="Brief movie summary")
    rating: float = Field(ge=0, le=10, description="Rating out of 10")

client = PydanticAIClient(
    model_name="openai/gpt-4o-mini",
    client_id="my_app",
    user_id="user123"
)

# Add system context
client.message_handler.add_message_system(
    "You are a movie expert. Provide detailed recommendations."
)

# Add user request
client.message_handler.add_message_user(
    "Recommend a classic science fiction movie."
)

recommendation = client.generate(result_type=MovieRecommendation)

print(f"Title: {recommendation.title} ({recommendation.year})")
print(f"Genres: {', '.join(recommendation.genre)}")
print(f"Rating: {recommendation.rating}/10")
print(f"Summary: {recommendation.summary}")

Message Builder Pattern

from pydantic import BaseModel, Field
from pydantic2 import PydanticAIClient

class Recipe(BaseModel):
    name: str = Field(description="Recipe name")
    ingredients: list[str] = Field(description="List of ingredients")
    instructions: list[str] = Field(description="Step-by-step instructions")
    prep_time: int = Field(description="Preparation time in minutes")
    serves: int = Field(description="Number of servings")

client = PydanticAIClient(
    model_name="openai/gpt-4o-mini",
    client_id="my_recipe_app",
    user_id="chef123"
)

# Build the conversation
client.message_handler.add_message_system(
    "You are a professional chef specializing in simple recipes."
)

client.message_handler.add_message_user(
    "I need a quick pasta recipe."
)

# Add context about ingredients
client.message_handler.add_message_block(
    "AVAILABLE_INGREDIENTS",
    ["pasta", "olive oil", "garlic", "tomatoes", "cheese"]
)

# Generate the recipe
recipe = client.generate(result_type=Recipe)

print(f"# {recipe.name}")
print(f"Prep time: {recipe.prep_time} min | Serves: {recipe.serves}\n")

print("## Ingredients")
for item in recipe.ingredients:
    print(f"- {item}")

print("\n## Instructions")
for i, step in enumerate(recipe.instructions, 1):
    print(f"{i}. {step}")

Context Manager Usage

from pydantic import BaseModel, Field
from pydantic2 import PydanticAIClient

class Answer(BaseModel):
    content: str = Field(description="Answer content")

# Using context manager for auto-cleanup
with PydanticAIClient(
    model_name="openai/gpt-4o-mini",
    verbose=True
) as client:
    # First query
    client.message_handler.add_message_user("What is Python?")
    response1 = client.generate(result_type=Answer)
    print(f"Answer 1: {response1.content}\n")

    # Add response to conversation
    client.message_handler.add_message_assistant(response1.content)

    # Second query
    client.message_handler.add_message_user("What are its main applications?")
    response2 = client.generate(result_type=Answer)
    print(f"Answer 2: {response2.content}")

    # Get usage stats before exiting context
    stats = client.get_usage_stats()
    print(f"\nTotal cost: ${stats.get('total_cost', 0):.4f}")

Budget-Aware Usage

from pydantic import BaseModel, Field
from pydantic2 import PydanticAIClient
from pydantic2.client.exceptions import BudgetExceeded

class Analysis(BaseModel):
    content: str = Field(description="Analysis content")

# Set a tight budget
client = PydanticAIClient(max_budget=0.01)  # $0.01 USD

try:
    # Try to generate a response (might exceed budget)
    client.message_handler.add_message_user(
        "Provide a detailed analysis of global economic trends."
    )
    response: Analysis = client.generate(result_type=Analysis)
    print(response.content)

except BudgetExceeded as e:
    print(f"Budget exceeded! Limit: ${e.budget_limit:.4f}, Cost: ${e.current_cost:.4f}")

    # Fall back to a smaller request
    smaller_client = PydanticAIClient(max_budget=0.01)
    smaller_client.message_handler.add_message_user(
        "Summarize current economic trends in one paragraph."
    )
    smaller_response = smaller_client.generate(result_type=Analysis)
    print(f"Fallback analysis: {smaller_response.content}")

Next Steps